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Weak magnetic materials whose susceptibility values are close to the instrument's accuracy show very large
errors in the direct evaluation of their ellipsoid parameters. This may lead to misinterpretation of the magnetic
fabric, which is often used as a geological indicator. In order to estimate the measurement uncertainties, several
statisticalmethods have beenproposed.Within the available statisticalmethods, the Linear PerturbationAnalysis
(Hext, 1963) and the non-parametric bootstrap (Constable and Tauxe, 1990) technique have been widely used.
In this paper, we make a complete study about these methods to estimate their limitations when applied to n
measurements of a single sample. We will analyze which method is better in terms of uncertainties, we will de-
termine when the methods do not provide reliable results and we will establish a measuring protocol. For that,
we run simulations for the Linear Perturbation Analysis and the non-parametric bootstrap varying i) the number
of measurements, ii) the instrumental error and iii) the shape parameter and the anisotropy degree of the AMS
ellipsoid. The results show that both methods are not reliable when the difference between eigenvalues is too
close in relation to the instrumental error, but increasing the number of measurements can improve the results.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Anisotropy of Magnetic Susceptibility (AMS) is the intrinsic
property of a material that describes the directional variability of the in-
duced magnetization with respect to the applied field. In single crystal
specimens, the AMS is related to the crystallographic structure accord-
ing to Neumann's law (Borradaile, 2003). In polycrystalline specimens,
the AMS is determined also by the degree of alignment of their constit-
uent crystallites. The alignment is caused by geological processes in
almost all rock types. The water flow in sediments (Hamilton and
Rees, 1970), the lava or magmatic flow in volcanic and pluton rocks
(Cañón-Tapia et al., 1995; Ernst and Baragar, 1992) or the ductile defor-
mation in metamorphic rocks (Hrouda, 1993) are some of the principal
processes studied by means of AMS measurements. Because of this,
since mid-1970s, the AMS studies have been an important tool in struc-
tural geology, petrofabrics and in the interpretation of magnetic fabrics
(Borradaile and Henry, 1997; Borradaile and Jackson, 2010; Kodama,
1995; Rochette et al., 1992; Tarling and Hrouda, 1993).

The magnetic susceptibility is linear for diamagnetic minerals by
definition. For paramagnetic minerals it is also linear for most available
magnetic fields. For ferromagnetic minerals, however, there is a weak
field range for which the susceptibility can be considered linear and
fittedmathematically into a second rank tensor, that is, a 3 × 3 symmet-
ric matrix K such that M = KH (Dunlop and Özdemir, 2001). Most
).
ferromagnetic minerals show this linear behavior for fields under 0.1
mT (Hrouda, 2002). The typical way to characterize the anisotropy is
to calculate the eigenvalues and the orthogonal eigenvectors of the sus-
ceptibility tensor and its graphical representation.

The usual experimental procedure to calculate the susceptibility
matrix consists of measuring bulk susceptibilities along several known
directions. Different experimental protocols (sets of directions to mea-
sure along) have been proposed; for a revision, see Borradaile (2003)
and references therein. The first schemes included six orientations;
however, later works increased the number of positions in order to
include an estimation of the error in themathematical fitting of the sus-
ceptibility tensor. A 7-orientation scheme and a 13-orientation scheme
were proposed by Borradaile and Stupavsky (Borradaile and Stupavsky,
1995). Both schemes, 7- and 13-orientation, are used in Sapphire Instru-
ments equipment. The KLY series and later MFK devices from AGICO In-
struments use however the 15-orientation scheme proposed by Jelinek
(1977). More schemes were discussed by Hext (1963) and Jelínek
(1978) but did not become popularly used.

In order to get a complete AMS analysis from the orientation
schemes, it is recommended an estimation of the confidence intervals
for the eigenvalues and the confidence ellipses for the eigenvectors.
The readings of bulk susceptibility, or data d, can be expressed as

d ¼ Dkþ e ð1:1Þ

where:

• D is the experimental design-matrix, the matrix of directional cosines
of the orientation scheme,
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• k is the column vector with the six independent elements of the sus-
ceptibility tensor

k ¼ K11;K22;K33;K12;K23;K13ð ÞT ð1:2Þ

• e is a column vector of random errors.

The best-fit for the susceptibility tensor is the result of multiplying
the data (d) by the generalized inverse of matrix D:

k ¼ DTD
� �−1

DTd: ð1:3Þ

Two different statistical methods are the most popular to estimate
the confidence intervals of the susceptibility tensor: Linear Perturbation
Analysis (LPA) (Hext, 1963; Jelínek, 1978) and non-parametric boot-
strap (NPB) (Constable and Tauxe, 1990).

In the LPAmethod, themean tensor for a number n of specimens (or
number n ofmeasurements of one specimen) is calculated by the theory
of least squares fitting. To estimate the confidence intervals of the
eigenparameters, the errors e are assumed small, independent and nor-
mally distributed. To calculate the confidence ellipses, the eigenvector
distribution is assumed to be a two-dimensional normal distribution
with semi-axes aligned along the mean eigenvectors.

Bootstrap analysis has two approaches: parametric bootstrap and
non-parametric bootstrap. The difference lies in the assumptions on the
data distribution. The parametric bootstrap assumes a particular data dis-
tribution and the non-parametric bootstrap does not (Davison, 1997).

The non-parametric bootstrap analysis is a random re-sampling
method with replacement of observations from the original sample.
It allows estimating standard errors, bias and confidence intervals
for the parameters. In particular, the bootstrap analysis proposed by
Constable and Tauxe (1990), a widely used method and associated
software used in the paleomagnetic community (Tauxe, 2010), is a
non-parametric bootstrap. The mean tensor is calculated in the same
way than for the LPAmethod. To calculate the confidence ellipse, the ei-
genvector distribution is assumed to be a Kent distribution (also known
as Fisher–Bingham 5 distribution).

The problem of the two methods, LPA and NPB, is that both could
yield unrealistic results. They strongly depend on the ratio of the instru-
mental error to the bulk susceptibility, and the ratio of the instrumental
error to the differences between eigenvalues. The AMS of amagnetically
weak sample, like one of quartz single crystal with kbulk ∼ 10−5 [SI]
(Tarling and Hrouda, 1993), and an anisotropically weak sample, such
as one of calcite with λmax − λmin ∼ 10−6 [SI] (Schmidt et al., 2006)
may not be well-determined. A magnetically weak sample is defined
here as a sample whose bulk susceptibility value is close to the instru-
mental error. An anisotropically weak sample is one for which the dif-
ferences between its susceptibility eigenvalues lie within the range of
the instrumental error.

The instrumental error includes, together with the technical sensitiv-
ity, other sources such as thermal drift and/ormechanical drift. These ad-
ditional sources increase the instrumental error at least one order of
magnitude with respect to its technical sensitivity (Biedermann et al.,
2013). The sensitivity of the most common commercial instruments is
in the range from10−6 [SI] for Sapphire Instruments susceptibility bridge
(Borradaile et al., 2008) and Bartington MS2/MS3 (www.bartington.
com) to 10−8 [SI] for AGICO Instruments (Hrouda and Pokornỳ, 2011).

Bothmethods (LPA andNPB) have been compared in previousworks
(Borradaile, 2003; Owens, 2000a; Owens, 2000b; Werner, 1997) for the
case of multiple specimens. The main differences found are the size and
orientation of the semiaxes of the confidence ellipses.

The goal of this study is to showhow the reliability of the LPA and the
NPBmethods varies according to the instrumental error, the magnitude
of the bulk susceptibility and the difference between the eigenvalues.
Moreover wewill establish validity limits for bothmethods and a proto-
col of measure for the case of n measurements of a single specimen.
In order to estimate the reliability, we will check if the success rate
reaches the confidence level used in the LPA and the NPB methods.
The success rate is the probability for the real anisotropy tensor lying in-
side the estimated confidence intervals.We estimate this probability by
performing 500 simulations of the calculation of the AMS ellipsoid. We
study the reliability for different cases of magnetically and anisotropi-
cally weak samples with different instrumental errors and number of
measurements.

2. Methodology

We have used a reference tensor, called the real tensor, to check the
reliability. The synthetic data used to run the simulations will be gener-
ated from this real tensor and a known error distribution. In each simu-
lation, the LPA and the NPB methods will be used to obtain the AMS
eigenparameters and their confidence intervals. For the eigenvectors,
the confidence regions are spherical ellipses, whose major and minor
semiangles are called η and ζ respectively. We will use the reference
tensor to estimate the success rate of both methods.

2.1. Synthetic data

The synthetic data are represented as a column vector that contains
allmeasurements of the different positions of the chosen scheme. In this
work, we have generated synthetic data for a 15-orientation scheme
(Jelinek, 1977), typical of AGICO Instruments. In order to create this vec-
tor, the following parameters are necessary:

• Kreal: the real tensor, fromwhich we can obtain the three eigenvalues
(λ1, λ2, λ3) and their eigenvectors (v1, v2, v3). The eigenvalues deter-
mine the mean susceptibility defined as λmean = (λ1 + λ2 + λ3)/3,
the degree of anisotropy (P) and the shape parameter (U) of the ellip-
soid. The anisotropydegree is defined as P=λ1/λ3 (Nagata, 1961) and
the shape parameter as U ¼ 2λ2−λ1−λ3

λ1−λ3
(Jelinek, 1981). These two vari-

ables (P and U) indicate how the spacing between the eigenvalues is
distributed.

• D: the design-matrix that contains the directional cosines of the 15-
orientation scheme.

• σ: the standard deviation of the instrumental error distribution as-
suming it follows a normal distribution (Biedermann et al., 2013). Ex-
perimentally, the instrumental error cannot be modified, but in this
work, σ has been included in the simulations as the percentage of
the mean susceptibility λmean. That is, a σ value of 0.1 would mean
an instrumental error of 10% of λmean. This parameter indicates how
magnetically weak the data are.

The real vector that will contain the 15-orientation measures is cal-
culated from the real tensor and the design-matrix as

dreal ¼ DKreal; ð2:1Þ

where the design matrix is

D ¼

:5 :5 0 −1 0 0
:5 :5 0 1 0 0
1 0 0 0 0 0
:5 :5 0 −1 0 0
:5 :5 0 1 0 0
0 :5 :5 0 −1 0
0 :5 :5 0 1 0
0 1 0 0 0 0
0 :5 :5 0 −1 0
0 :5 :5 0 1 0
:5 0 :5 0 0 −1
:5 0 :5 0 0 1
0 0 1 0 0 0
:5 0 :5 0 0 −1
:5 0 :5 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð2:2Þ

http://www.bartington.com
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and kreal is the vector with the six independent components of the real
susceptibility tensor Kreal, as in Eq. (1.2).

The known error distribution is used to calculate n simulated mea-
sures for each 15 positions (Jelinek, 1977) and to introduce the instru-
mental error in the real measures (dreal). Then, the synthetic vector
used to run the simulations will be calculated from a normal distribu-
tion with mean μ= dreal;i, where dreal;i is the real value for the position
i, and standard deviation σ.

2.2. Linear Perturbation Analysis: Hext method

According to Hext (1963) the mean susceptibility tensor is calculat-
ed from Eq. (1.3) and the errors e in Eq. (1.1) are assumed random, in-
dependent and normally distributed. The confidence intervals for the
eigenparameters at the 95% confidence level are calculated in the fol-
lowing way:

• For the eigenvalues,

λi;Hext � t 1−α=2ð Þ n−1σaTii DTD
� �−1

aii

� �1=2
;

where t is the Student's t-distribution for n degrees of freedom, and aij
is a function of the unit vectors Xi, Xj such that Xi

TSXj = aijs for any
symmetric matrix S for which s is the six component vector represen-
tation (Eq. (1.2)). The estimated variance is

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
∑e2i
n f

s
;

where nf=N− 6 is the number of degrees of freedom, in the case of n
measures and a design of 15 positions,N=15n, andei ¼ di−Dijk j are
the residuals.

• For the eigenvectors (vi), the confidence regions are ellipses whose
semi-angles are alignedwith the eigenvectors. The semiangles are cal-
culated by

ϵ12 ¼ tan−1 fσ=2 λ1−λ2ð Þð Þ
ϵ23 ¼ tan−1 fσ=2 λ2−λ3ð Þð Þ
ϵ13 ¼ tan−1 fσ=2 λ1−λ3ð Þð Þ
ϵ21 ¼ ϵ12
ϵ32 ¼ ϵ23
ϵ31 ¼ ϵ13;

ð2:3Þ

where ϵij defines the semiaxis directed towards vj for the confidence

region of vi, and f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 F 2;n fð Þ; 1−αð Þ
� �r

, being F 2;n fð Þ; 1−αð Þ the 1 − α

quantile of the F distribution with 2 and nf degrees of freedom. For
more details, see Hext (1963).
In order tomake the nomenclature consistent, η1=max(ϵ12, ϵ13), and
ζ1 = min(ϵ12, ϵ13). In the same way, we will rename the semiaxis η2,
ζ2, η3 and ζ3.

2.3. Non-parametric bootstrap method

The bootstrap method introduced by Constable and Tauxe (1990) is
a non-parametric bootstrap which consists of the following steps:

1. Compute the Kj (j = 1 … n) from Eqs. (1.3) and (1.2).1

2. Compute a pseudo-mean tensorK ¼ n−1∑n
i¼1 K̂i, where K̂i (i=1…

n) are randomly selected from the n initial tensors Kj (re-sampling
with replacement).

3. Calculate the eigenparameters for K.
4. RepeatNb times thefirst three steps to obtain samples of thedistribu-

tions of each of the eigenparameters.
1 Usually the next step is normalizeKj by its trace, but in this paperwe do not normalize
the tensor because the study is for only one sample measured n-times.
Wehave usedNb=1000 for the number of iterations of themethod.
The mean eigenparameters will be calculated from Kmean ¼

N−1
b ∑Nb

l¼1Kl. And the confidence intervals for α confidence level are cal-
culated assuming a normal distribution for each of the eigenvalues,
and a Kent distribution for each of the eigenvectors, also called Fisher–
Bingham 5 distribution (Kent, 1982). The details on the calculation of
the confidence ellipse for the Kent distribution are given in Appendix A.

An important characteristic of the Kent distribution is that, when
calculating the confidence ellipse from a set of vectors, the result chang-
es if any of the vectors is exchanged by its opposite. However, if v is an
eigenvector, its opposite− v is an equally valid eigenvector. Because of
this, the directions of the eigenvectors must be carefully chosen before
calculating the corresponding confidence ellipse. In this paper, our se-
lection criterion is the minimum angular distance between directions.
That is, we choose, from the two antipodal eigenvectors, the one closer
to the direction of the eigenvector of the mean susceptibility tensor.

2.4. Simulations

A total of 500 simulations have been run for each set of variables. The
set of variables is constituted by the degree of anisotropy (P), the shape
parameter (U), the standard deviation of the instrumental error distri-
bution (σ) and the number of measurements (n).

Each variable constitutes a different piece of information in the final
results. The standard deviation indicates how magnetically weak the
data are, because σ is the ratio of the instrumental error to the mean
susceptibility. The degree of anisotropy and the shape parameter indi-
cate how anisotropically weak the data are. By increasing the number
of measurements, the information about the instrumental error distri-
bution and the statistical significance of the results are improved.

All the methods and simulations are implemented in R (free soft-
ware programming language). The confidence level in all this study is
set to 95%, being, therefore, α = 0.05. The mean susceptibility λmean is
taken as the unit of the susceptibility scale, so that the values of σ and
the eigenvalues are dimensionless and to be understood as percentages
of λmean. For the non-parametric bootstrapmethod, the repetition num-
ber Nb is set to 1000.

3. Results

A set of simulationshave been performed to showhow the reliability
of the methods and their confidence intervals vary according to the el-
lipsoid parameters, the number of measurements and the instrumental
error. The results are displayed in seven figures, each of them containing
eight graphs. In each figure P and U are fixed and only the variable rep-
resented in the X-axis, either σ or n, varies while the other one remains
also fixed. For each value of the X-axis variable, the plots in the eight
graphs summarize the results of 500 simulations.

When σ varies, the value of n is fixed to n = 20, the threshold indi-
cated by Tauxe (1998) to satisfy a confidence level of 95% in the non-
parametric bootstrap. From these simulations we can determine a
critical value, σc, that indicates themaximum σ for which bothmethods
satisfy a 95% confidence level for n=20. This σc is different for each set
of values of P and U. When n varies, the value of σ is fixed to a chosen
value higher than σc. The reason to run simulations varying n is to
check if the reliability of the methods improves when the number of
measurements increases.

The chosen combinations of P and U correspond to different types of
ellipsoid. The values of P are 1.01 and 2, corresponding to a low anisot-
ropy case and a high anisotropy case, respectively. The values of U are 0,
0.9 and −0.9, corresponding to a neutral, oblate and prolate ellipsoid,
respectively, to study the behavior of the two end-members, the case
with two close eigenvalues and the case with evenly spaced eigen-
values. We have not chosen the extreme values U=± 1, when two ei-
genvalues are equal, because speaking of confidence ellipses does not
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make sense in that case since the eigenvector space would degenerate
to a plane.

Mathematically there is no difference between choosing oblate or pro-
late ellipsoid, in both cases there are two eigenvalues very close to each
other. Because of this, we have chosen an oblate ellipsoid (U = 0.9)
Fig. 1. Average mean errors of the eigenparameters an
for the case of low anisotropy (P = 1.01) and a prolate ellipsoid (U =
−0.9) for the case of high anisotropy (P = 2).

All figures contain eight graphs distributed along two columns
and four rows. The graphs in the left column represent in the Y-axis
the percentage of successful results obtained by the two considered
d their reliability for P = 1.01, U = 0, and n = 20.
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methods, with a dashed line indicating the 95% success. The first graph
represents the success percentage in the estimation of the AMS eigen-
values λ1, λ2 and λ3. The second, third and fourth graphs in the left
side of the figure represent the success percentage in the estimation of
Fig. 2. Average mean errors of the eigenparameters and
the maximum, intermediate and minimum eigenvectors, v1, v2 and v3
respectively.

The graphs in the right column represent in the Y-axis the average
size of the confidence intervals obtained by the two methods for a 95%
their reliability for P = 1.01, U = 0.9, and n = 20.



80 S. Guerrero-Suarez, F. Martín-Hernández / Tectonophysics 629 (2014) 75–86
confidence level. The first graph shows the average confidence intervals
of the eigenvalues,Δλ1,Δλ2 andΔλ3. The second graph shows themean
semiaxes (semiangles) of the confidence ellipse for the maximum
Fig. 3. Average mean errors of the eigenparameters a
eigenvalue, η1 (major semiaxis), ζ1 (minor semiaxis), in radians. In the
same way, the third and fourth graph show η2, ζ2, and η3, ζ3, for the in-
termediate and the minimum eigenvalue respectively.
nd their reliability for P = 2, U = 0, and n = 20.



81S. Guerrero-Suarez, F. Martín-Hernández / Tectonophysics 629 (2014) 75–86
In Figs. 1, 2 and 3, the X-axis, in all graphs, represents σ, the
standard deviation of the instrumental error distribution. In Figs. 4,
5, 6 and 7, the X-axis, in all graphs, represents n, the number of
measurements.
Fig. 4. Average mean errors of the eigenparameters and
3.1. Influence of σ

Fig. 1 summarizes the results of the experiment with a low
anisotropy (P = 1.01) and neutral ellipsoid (U = 0) for n = 20. The
their reliability for P = 1.01, U = 0, and σ = 0.02.



Fig. 5. Average mean errors of the eigenparameters and their reliability for P = 2, U = 0, and σ = 1.
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differences between eigenvalues are 0.01, 1% of λmean. The value of σc,
estimated from the graphs in the left column, is 0.005. This value of σc

means that an instrumental error higher than 0.5% of λmean will provide
a no reliable AMS ellipsoid for this set of values of P, U and n.
Fig. 2 corresponds to the example of low anisotropy and ob-
late ellipsoid for n = 20. The difference between eigenvalues
is λ1 − λ2 = 5 ⋅ 10−4 [SI] and λ2 − λ3 = 9.4 ⋅ 10−3 [SI]. In this
case, the value of σc is less than 0.001. The LPA method reaches a



Fig. 6. Average mean errors of the eigenparameters and their reliability for P = 2, U = −0.9, and σ = 0.2.
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confidence level of 95% for the eigenvalues and the eigenvector
associated to the distinct eigenvalue (λ3) for σ = 0.01, but not for
the eigenvectors associated to the other eigenvalues. The NPB
method only reaches a 95% confidence level for the eigenvalues
for σ = 0.001.
Fig. 3 displays the results for a high anisotropy (P = 2) and neutral
ellipsoid (U = 0) for n = 20. In this case, the value of σc is 0.2 and the
differences between eigenvalues is 0.7.

Figs. 1, 2 and 3 show thatσ has to be smaller than the differences be-
tween eigenvalues to be able to distinguish the eigenvalues and tomake
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Fig. 7. Average mean errors of the eigenparameters and their reliability for P = 1.01, U = 0.9, and σ = 0.01.
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a good interpretation of the principal directions. The range of reliability
for both methods decreases (smaller σc) as the absolute value of the
shape parameter increases and the anisotropy degree decreases. The
results of the LPA and the NPB methods are much closer for σ ≤ σc,
both in the reliability and in the size of the confidence intervals. When
the value of σc is exceeded, the negative slope in the eigenvector
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reliability graphs of the LPA method is higher than the one in the NPB
method, but the sizes of the NPB confidence intervals are much bigger,
quickly approaching 90∘. For the eigenvalues, the reverse behavior is
observed, being the LPA method more reliable, without a big difference
in the sizes of the confidence intervals, though. The case for P= 2, U=
−0.9 and n=20 is not shown in this paper because the trend is similar
to the Figure 2, with a value of σc = 0.05.

3.2. Influence of n

In Figs. 4, 5, 6 and 7 we show how the reliability of the methods
and the confidence intervals change when n increases for fixed values
of P, U and σ. These graphs demonstrate that, by increasing the number
of measurements, we can improve the reliability andminimize the AMS
confidence intervals around half.

Fig. 4 shows the case of low anisotropy and neutral ellipsoid for
a value of σ = 0.02, four times the value of σc. We can see that the
NPBmethod needs n≥ 50 to reach a 95% confidence and the LPAmeth-
od, n≥ 100. Fig. 5, the case of high anisotropy and neutral ellipsoid for a
value ofσ=1,five times the value ofσc, shows a critical value of n=50
for both methods. Fig. 6 reflects the case of high anisotropy and prolate
ellipsoid for a value of σ= 0.2, four times the value of σc. In this figure,
the critical value of n for the eigenvalues is n=50 for bothmethods, but
for the eigenvectors, the NPBmethod needs n=50 and the LPAmethod
needs more than one hundred measurements.

In Fig. 7 we have simulated a case with P = 1.01, U = 0.9 and σ =
0.01, ten times the value of σc. A mineral with similar values of P and
U is the quartz with P = 1.01 and U = 1 (Tarling and Hrouda, 1993).
For quartz, with kbulk∼ 13.10−6 [SI], a value ofσ=0.01would translate
to an instrumental error of 1 ⋅ 10−7 [SI]. This value can correspond to
the total instrumental error for AGICO Instruments, since their sensitiv-
ity is in the range of 10−8 [SI] (Hrouda and Pokornỳ, 2011) and the total
error is at least one order of magnitude larger than the sensitivity
(Biedermann et al., 2013). For this case, only the LPAmethod can deter-
mine the eigenvalueswith a 95% confidence level for thewhole range of
n (from 8 to 100). The NPBmethod cannot reach a 95% confidence level
(for the eigenvalues) evenwith one hundredmeasurements. For the ei-
genvectors, no method can reach a 95% confidence level for the eigen-
vectors associated to the closest eigenvalues (Hall et al., 2009).

4. Discussion and conclusions

In this paper we have explored the well-resolved region for which
the Linear Perturbation Analysis by Hext (1963) and the non-
parametric bootstrap method proposed by Constable and Tauxe
(1990) are reliable at a 95% confidence level. For that, we have per-
formed simulations varying the ellipsoid parameters, P and U, the num-
ber of measurements n and the standard deviation of the instrumental
error distribution,σ, taking as susceptibility unit themean susceptibility
λmean.

We have observed that the reliability of both methods depends on
the ratio of instrumental error to mean susceptibility (magnetically
weak samples) and the spacing of eigenvalues (anisotropically weak
samples). For both methods there exists a maximum value of σ,
named here critical value σc, for which the methods are reliable. This
value of σc increases as the difference between eigenvalues does. That
is, the value of σc is higher when the anisotropy degree increases and
the shape parameter decreases. In order to reach the confidence level
of 95% in both methods, the value of σ has to be smaller than the mini-
mum difference between eigenvalues, at least for n b 20.

For fixed P and U, the confidence intervals are similar for both
methods when they both are in their well-resolved region. When out-
side the well-resolved region, the behavior of both methods is different
for the estimation of eigenvalues and their eigenvectors. For the eigen-
values, the success rate obtained by the LPA method is always higher
than the one of the non-parametric bootstrap method, although the
sizes of the eigenvalue errors of the LPA method are not much bigger.
For the eigenvectors, the reverse is true. However, there is a big differ-
ence between the size of the errors (the semiangles obtained by the
NPB method quickly overtake the value of 50°). Simulations reveal
that when the methods are not reliable for a certain experimental
setup (n, σ), the reliability region may be reached by sufficiently in-
creasing n, resulting in considerably better accuracy too.

From these results we can suggest that when the eigenparameters
are calculated by the two methods and the results are similar, then,
they are in their well-resolved region and the results are reliable. But
if there is a difference, the LPA method tends to be more reliable for
the eigenvalues and the non-parametric bootstrap method for the ei-
genvectors, although the confidence ellipsesmay be too large for the re-
sults to be useful.

The current study can be used as an estimator of themeasuring pro-
tocol for the evaluation of single crystal properties, where a previous es-
timation of the parameters (P, U, λmean) is available from theoretical
calculations or preliminary measurements. From this previous estima-
tion we can get an approximation of the spacing between eigenvalues
(Δλ). Since the instrumental error distribution (and its σ) is part of
the empirical method and cannot be changed significantly, the required
number of measurements can be estimated before the actual measure-
mentwork is carried out. Ifσ≤Δλ/2, n=20 is enough to obtain reliable
parameters. If σ ∼ Δλ it is necessary a value of n=50. If σ≥ 2Δλ, nwill
reach unpractical values over one hundred measurements. The results
presented in this work show the importance of the instrumental error
distribution. This includes together with the technical instrumental
sensitivity, additional sources of systematic errors related to the partic-
ular instrument and its location. It would be recommended for very
precise determinations of AMS properties the evaluation of σ for each
laboratory.
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Appendix A. Confidence ellipse calculation for the Kent distribution

According to Kent (1982), a 1−α confidence ellipse can be obtained
for themean value x of a set of vectors xi, with i=1… Nb, that follow a
Kent distribution. To obtain the ellipse parameters, the following steps
are followed:

• calculate the mean vector x ¼ N−1
b ∑xi;

• calculate the dispersion matrix S = Nb
−1 ∑ xixiT;

• choose a rotation matrix H that rotates x to the north polar axis, i.e.

H ¼
cos θð Þcos ϕð Þ −sin ϕð Þ sin θð Þcos ϕð Þ
cos θð Þsin ϕð Þ cos ϕð Þ sin θð Þsin ϕð Þ
−sin θð Þ 0 cos θð Þ

0
@

1
A

where θ and ϕ are the polar coordinates of x;

• calculate the matrix B = HTSH;
• choose a rotation matrix W about the north pole to diagonalize the
upper 2-by-2 submatrix of B,

W ¼
cos ψð Þ −sin ψð Þ 0
sin ψð Þ cos ψð Þ 0Þ

0 0 1

0
@

1
A
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• calculate the orientation matrix Γ = HW, which is also a rotation;
• use Γ to transform the original vectors to the population standard
frame of reference: xi∗ = ΓTxi;

• in this standard frame of reference, with coordinates (x1∗ , x2∗ , x3∗), the
confidence ellipse's equation takes the form

Nbμ
2 x�21

σ2
1

þ x�22
σ2

2

 !
bχ2

2;α ð4:1Þ

where χ2;α
2 denotes the upper α critical value of the chi-squared distri-

bution with 2 degrees of freedom, and

μ ¼ N−1
b

X
x�i3;σ

2
1 ¼ N−1

b

X
x�2i1 σ2

2 ¼ N−1
b

X
x�2i2 ;

• fromEq. (4.1), themajor andminor semiaxes of the confidence ellipse

are η ¼ arcsin
ffiffiffiffiffiffiffiffiffi
σ1χ2

2;α

Nbμ2

q� �
and ζ ¼ arcsin

ffiffiffiffiffiffiffiffiffi
σ2χ2

2;α

Nbμ2

q� �
, while the directions

of the semiaxes are obtained from the two first columns of the orien-
tation matrix Γ.
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